
Journal of Consciousness Exploration & Research | Dec. 2024 | Vol. 15 | Issue 3 | pp. 240-254 240
Garrido-Merchán, E. C., & Sánchez-Cañizares, J., Optimizing Integrated Information with a Prior Guided Random
Search Algorithm

Article

Optimizing Integrated Information with a Prior Guided Random
Search Algorithm

Eduardo C. Garrido-Merchán*1 & Javier Sánchez-Cañizares@
*Quantitative Methods Department, Universidad Pontificia Comillas, Madrid, Spain

@Grupo Mente-Cerebro at ICS, Universidad de Navarra, Navarra, Spain

Abstract

Integrated information theory (IIT) is a theoretical framework that provides a quantitative mea-
sure to estimate when a physical system is conscious, its degree of consciousness, and the complexity
of the qualia space that the system is experiencing. Formally, IIT rests on the assumption that if a
surrogate physical system can fully embed the phenomenological properties of consciousness, then the
system properties must be constrained by the properties of the qualia being experienced. Following
this assumption, IIT represents the physical system as a network of interconnected elements that can
be thought of as a probabilistic causal graph, G, where each node has an input-output function and
all the graph is encoded in a transition probability matrix. Consequently, IIT’s quantitative measure
of consciousness, Φ, is computed with respect to the transition probability matrix and the present
state of the graph. In this paper, we provide a random search algorithm that is able to optimize Φ in
order to investigate, as the number of nodes increases, the structure of the graphs that have higher
Φ. We also provide arguments that show the difficulties of applying more complex black-box search
algorithms, such as Bayesian optimization or metaheuristics, in this particular problem. Additionally,
we suggest specific research lines for these techniques to enhance the search algorithm that guarantees
maximal Φ.

1 Introduction
Together with the Global Neuronal Workspace, Integrated Information Theory (IIT) [5, 30, 23, 32, 31]
is currently the most prominent approach to obtaining a scientific theory of consciousness, i.e, a theory
that can identify the neural correlates of consciousness through some direct or indirect measure. Diffi-
culties in agreeing on experimental setups that may discriminate between different theories have recently
led to a sort of adversarial collaboration between them. [18] Within said collaborative framework, each
theory provides the conditions for it to be experimentally falsified. However, despite such partnership
and the obtaining of promising results in clinical tests, [9, 8, 15] reaching definitive answers may prove
more difficult than initially expected because of the multifactorial complexity of the biological substrate
of consciousness, namely the living brain. [4]

The appeal of IIT for computation science and, in general, the AI community relies on its straight-
forward definition of consciousness as a formal property of any physical system, composed of nodes and
interactions, that instantiates it. Consciousness is maximally integrated information Φ; [30] the latter
quantity being amenable to a strict mathematical definition in a network of interconnected elements that
can be thought of as a probabilistic causal graph. Were said statement true, IIT would be providing
not only a quantifiable prediction for a system to be conscious but also a heuristic approach to generate
conscious systems —the holy grail of the AI program. Yet it could also happen that IIT offers just
a necessary, but not sufficient, condition for the emergence of consciousness in a system. As a logical
consequence, a system implementing an artificial intelligence algorithm need not be conscious whatsoever
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[11] and, hence, need not understand the meaning of the problems that it solves. [10]

Interestingly, IIT derives its mathematical definition of consciousness from five axioms that fully
account for what, phenomenologically, being conscious implies. To wit: The present experience of con-
sciousness exists, is informative, composed, integrated, and excludes other conscious experiences [23].
Said axioms should naturally determine the emergence of a physical scale in which the system, from
its own perspective, presents a maximally integrated structure of intrinsic information, in which the in-
formation of the whole is maximally irreducible to the sum of information in subsets of any partition
of the system. Additionally, the physical state of the substrate instantiating maximal Φ, for the same
token, presents a maximal cause-and-effect composition (for the details of the link between measures of
integrated information and causality in an interconnected network, one may see [1, 2]).

Whereas IIT continues developing as a research program that strives for finding the best definition of
distance between informational contents [6] and including in its framework many other features of con-
sciousness, [14] it has been criticized on diverse grounds [27, 24, 20]. More specifically for our interests in
this paper, some authors [21, 25] have raised the issue of the so-called ’intrinsicality problem’ (IP), namely,
the fact that consciousness cannot be an intrinsic property of the system because maximal Φ crucially
depends on the possible existence of bigger values of Φ if the initial system is appropriately linked to or
embedded in larger systems. IP’s threat, if true, could manifest that the causality involved in the constitu-
tion of the system goes beyond the conceptualization of causality provided by IIT in its current form. [25]

Even though the literature on the computation of Φ in different networks is rapidly increasing and
gaining insights on the logical architectures favoring maximal Φ (basically those consisting of modular,
homogeneous, and specialized networks with feedback connections [23]), the prohibitively large computa-
tion times for big networks, scaling with the number of nodes (n) as O(n53n), [17] make it necessary the
search for alternative heuristics and/or new methods for measuring Φ in larger systems. [22, 29] Not much
is known about the actual distribution of Φ over different network types and topologies. This paper thus
explores the benefit of random search algorithms in order to compute Φ. If, according to IIT’s creators
”the quantity and quality of consciousness are what they are,” and consequently ”the cause–effect struc-
ture cannot vary arbitrarily with the chosen measure of intrinsic information” [6], how maximal Φ varies
with the number of systems nodes must be a relevant matter to get a glimpse of how consciousness could
eventually scale up in networks. Hence, our paper studies the expected increase of maximal Φ with the
number of nodes, paving the way for gaining insights on the network’s architectures that favor conscious-
ness and assessing the seriousness of the IP, if IIT holds, in future works. In such an endeavor, our paper
will also show the limits of some optimization techniques for IIT as the number of network nodes increases.

This paper is organized as follows. First, we provide a cursory definition of integrated information,
a problem definition of Φ optimization, and a technical description of the methodology that we have
implemented to optimize Φ. Most critically, we provide arguments to justify why our proposed algorithm
does not use smarter black-box global optimization techniques such as Bayesian optimization. Then,
we show in an experiments section empirical evidence to support the claim that our method is able to
optimize Φ. Finally, we present some concluding remarks and refer to possible research lines to optimize
Φ in further work.

2 Proposed Methodology
In this section, we begin formally defining integrated information and the problem of optimizing integrated
information in the space of transition probability matrices. Then, we show how this problem cannot be
solved with common metaheuristics or techniques such as vanilla Bayesian optimization [12] and introduce
a random search algorithm to solve the problem that can be used as a baseline for further research.
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2.1 Integrated information
Throughout this paper, we use the definitions of integrated information employed in [17]. Details regard-
ing the differences between integrated information (ϕ) for a mechanism —a set of nodes and interactions
in a graph forming a concept— and conceptual integrated information (Φ) for a constellation of concepts
forming a maximally irreducible conceptual structure, can be consulted in [23]. Computations in our
paper always refer to Φ.

We can define integrated information for a mechanism in state s as

ϕ(s) = D[p(s0 → s)∥pMIP (s0 → s)] , (2.1)

where D is a measure of the distance between the probability distribution p of obtaining state s as
the cause (effect) of future (past) states s0 and the correspondent probability distribution pIMP when
the system has been optimally partitioned in its weakest links, i.e. decomposed into those parts that are
most independent (least integrated), providing a minimum of effectively integrated information for the
mechanism as a whole.

When one finds maximal ϕ for a mechanism in state s in a system, one has a concept. After deter-
mining the structure of concepts in a candidate system, one is allowed to define the conceptual integrated
information (Φ) as Φ(C) = D(C∥CMIP ), where C refers to the structure of concepts, CMIP refers to
the optimal partition of the structure of concepts that makes Φ(C) minimal, and D is an appropriately
adapted measure of the distance between the corresponding probability distributions. Different versions of
IIT have employed different definitions of the distance between probability distributions —the Kullback-
Leibler divergence for ϕ [5], the Wasserstein Distance, also known as Earth Mover’s Distance, for both ϕ
and Φ [23], or the Intrinsic Difference [6]. As the PyPhi algorithm favors the Earth Mover’s Distance as
the measure of integrated information [17], which quantifies how much two distributions differ by taking
into account the distance between system states, we will use it here too.

2.2 Problem definition
We now provide a formal definition of the global black-box optimization problem that we need to solve.
Concretely, we need to tackle the optimization of a function Φ : R2D,D → R, from a D-2D-dimensional
transition probability matrix, with conditional independencies, space to a real number.

ω⋆ = argmax
ω∈Ω

Φ(ω) s.t. ω ∈ Υ , (2.2)

where ω⋆ is the TPM that maximizes Φ(·), ω is a TPM of the D-dimensional TPM space, Ω ∈ R2D,D

is the D-dimensional TPM space, Υ is the space of TPM with conditional independencies and D ∈ N+

is the number of dimensions of the TPM, whose range in this problem is N. Recall that the objective
function Φ is expensive to evaluate when the number of nodes of the TPM is high. If ω /∈ Υ, then
Φ(ω) = ∅. Consequently, R2D,D is constrained to Υ. This is especially problematic, because of the curse
of dimensionality. In particular, as D grows, the ΩD space will contain higher Φ TPMs, which is desirable.
However, the number of valid TPMs will be lower with respect to all the possible TPMs than in lower
dimensional TPM spaces. Consequently, as the evaluation of Φ is expensive, we have a tradeoff between
risking to find high Φ solutions in a higher dimensional TPM space where the volume of valid TPMs
is low or searching in a lower dimensional TPM space where we have a high probability of obtaining a
valid TPM but its Φ is potentially low. More formally, if δ(ω) is a delta function whose value is 1 if
ω ∈ Υ, Dmin is the lowest dimensionality considered for the number of nodes of the TPM, Dmax is the
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highest dimensionality considered for the number of nodes of the TPM and p(ω|ΩD) is the probability of
sampling each possible ω ∈ ΩD, we have that:

∫
δ(ω)p(ω|ΩDmax

)dω ≤ ... ≤
∫

δ(ω)p(ω|ΩDmin
)dω . (2.3)

Moreover, as D grows, the cost of evaluating Φ also grows. Hence, if the budget is constrained by
time, and not by iterations, we must be sure about searching in a high dimensional Ω space. We tackle
this issue and define a new algorithm to solve this problem, among others that we further explain, in the
following subsection.

2.3 Proposed algorithm
As we have seen in the previous section, the global optimization problem of the Φ function ω⋆ =
argmaxω∈Ω Φ(ω) is not smooth with respect to the smallest variations ∇ω that could be performed
in the transition probability matrix space Ω. For example, in the case of binary nodes, switching just one
node from zero to one can make the Φ from R to ∅. In particular, this is troublesome for some advanced
black-box global optimization techniques, as we describe in this section.

Bayesian optimization [12, 28] is the state-of-the-art class of methods to solve black-box global opti-
mization problems that iteratively recommend a suggestion x making a tradeoff between exploration of
promising unknown regions of the search space X and potential good explored solutions based on the
predictions made by a probabilistic surrogate model as a Gaussian process [26], which formally is defined
as:

x⋆ = argmin
x∈X

f(x) , (2.4)

where x ∈ RD is a candidate point of the hypercube X ⊆ RD and f(·) is the multi-modal function
to be optimized. In order to be considered a black-box global optimization problem, f must have no
known analytical expression, and hence we are not able to extract gradients; it can be noisy and it is
expensive to evaluate. Most critically, if the function f(·) is cheap to evaluate, then it is recommended to
use metaheuristics as genetic algorithms [16], that also perform an exploration-exploitation tradeoff. The
reason is that their execution time to suggest recommendations x is faster than in the case of Bayesian
optimization, whose complexity is a cubic on the number of previous recommendations O(N3), where N
is the number of previous recommendations.

The problem definition presented in the previous section involves the computation of Φ, which it is
very expensive if the number of nodes of the TPM is high. Consequently, this scenario does not present
a good fit for metaheuristic algorithms, as they require the evaluation of the objective function to be
cheap. Moreover, vanilla Bayesian optimization requires that the function does not vary with respect to its
parameters up to a certain K-Lipschitz value. [13] Critically, in this problem the smallest variation on any
elements of the TPM matrix can make Φ jump from R to ∅. Hence this assumption, required by Bayesian
optimization, is violated and would need to be specifically modified to tackle this particular problem,
whose complexity is even bigger as the space being optimized is R2D,D, making Bayesian optimization
also hard to use. Having reviewed these alternatives, there also exists another reason why those techniques
may be inefficient. Concretely, if the K-Lipschitz value assumption of Bayesian optimization is violated,
the algorithm cannot perform exploitation. Hence, any exploitative behavior on the D-dimensional TPM
space Ω would be inefficient. Consequently, the only alternative that remains is to perform a prior guided
random search algorithm, adapted to this particular problem, and encode into the prior our knowledge
about the Φ optimization problem. In particular, we enhance a random search procedure instead of a
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grid search because random search significantly outperforms grid search when the percentage of explained
variance on the variable to optimize is not uniform over the explanatory variables [7]. As assuming that
the variance of Φ is uniformly explained by all the nodes for all the possible TPMs is a heavy assumption,
we can not rely on uniform grid search, as random search would be a smarter option in this case. Recall
that random search outperforms grid search when some variables of the input space explain the objective
function better than others. Consequently, we decided to enhance the random search procedure. The
prior guided random search illustrated on Algorithm ?? will obtain Φ⋆, which is an approximation to
Φbest, that is, Φ⋆ ≈ Φbest, which could only be found using an exhaustive search throughout all the TPM
D-dimensional space Ω. Where, in Algorithm ??, µ is the adaptation rate of p(ω), the multinomial a
priori distribution of the probability of obtaining Φ⋆ in a certain D-dimensional space, ϵ is the number
of iterations that are needed to update p(ω), T is the budget of total iterations that the user can afford,
Dmin is the lower dimension of the TPM D-dimensional space and Dmax is the higher dimension of the
TPM D-dimensional space. The sampling functions define a probabilistic graphical model where the
TPM is modeled as a random variable that depends on the multinomial random variable that encodes
the probability distribution assigned to the dimensions of the D-dimensional TPM space. More formally,
we obtain ωi sampling from the following joint probability distribution:

ω = uniform_matrix(ω | D) multinomial(D | θ,Dmin, Dmax) . (2.5)

Sampling from the previous joint distribution of both random variables we can sample TPMs condi-
tioned to the probability of obtaining a TPM belonging to the space of valid matrices Υ. The initial state
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of the TPM necessary to compute Φ is tested in an iterative fashion until a valid state is found.

At the end of a batch of ϵ iterations, we update our beliefs about the θ parameter values of our
multinomial distribution p(ω|θ) up to a learning rate value µ. We do so in a Bayesian learning fashion,
basically defining a likelihood function f(Φlist, µ) that penalizes the dimensions whose results are worse
and rewards those whose values are better up to µ. This likelihood function is multiplied by the prior
beliefs p(ω|θ) and the posterior is obtained by normalizing the previous operation with a normalization
constant

∑Dmax

Dmin
p(ω|θ)f(Φlist) to ensure that the resulting distribution is a valid multinomial distribution

and the prior is conjugate. Finally, we smooth the maximum and the minimum of the vector of probabil-
ities by a quantity κ = 0.02 that could be also modified by the user. The specific parametric likelihood
function f(Φlist, µ) can be set by the user. Concretely, we just provide as default to linearly penalize
or reward each dimension in 0.2µr points where r is the ranking of each dimension D that consists of a
[−1, 1] linear space vector. More formally, if p(ω|θ)new is the posterior distribution obtained after the
batch of ϵ iterations, then, to obtain this distribution we perform the following update:

p(ω|θ)new =
f(Φlist, µ)p(ω|θ)∑Dmax

Dmin
f(Φlist, µ)p(ω|θ)

(2.6)

Lastly, we remark that the values of the set of prior beliefs θ, the learning rate µ, and the batch size
of iterations ϵ are hyper-parameters that the user can set and will modify the behavior of the algorithm.
Additionally, they also allow the user to set the value of Dmin, Dmax to define the TPM search space Ω.
In the next section, we illustrate the algorithm performance, being compared with a grid search method
and a random search method as baselines.

3 Experiments
In order to estimate the integrated information of a transition probability matrix, we use the PyPhi
tool implemented on Python3 [17]. In the computation of Φ, to measure distances between probability
distributions, we use the Earth Mover’s Distance [3], which is equivalent to the Hamming Distance if
the nodes of the graph are binary. We split the experiment section into two parts. First, we show the
results obtained by the prior guided random search algorithm with respect to other baselines, just to
illustrate how we can obtain graphs whose Φ score is bigger algorithmically. Driven by the results of
these experiments and because of the size of the TPM space that makes it computationally unfeasible to
explore, we append another section where we try to statistically make inference about Φ as the number of
nodes grows. We exhaustively search for an initial state for the TPM and retrieve the first feasible state
for a randomly sampled TPM, making a point estimation about the mean Φ of the TPM with the first
feasible state found, for computational reasons. All the code, written on Python3, and the experiments
are uploaded into the Github repository (https://github.com/EduardoGarrido90/iit_opt).

3.1 Prior Guided Random Search experiments
The following experiments model the obtained Φ⋆ by the various methods as a Gaussian random variable
with mean µ and standard deviation σ. All the experiments are repeated 25 times to infer their respective
values of µ and standard deviation σ. Namely, we compare our proposed prior guided random search
method with respect to a grid search method and a random search method. The random search method
samples uniformly both the biggest dimension of the TPM and the values of the matrix. However, the
grid search method uniformly splits the dimensions of the TPM across all the space range, and the binary
TPMs are selected by obtaining the binary representations of a linear space of integers from 0 to 2n where
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n is the number of nodes which are the columns of the matrices.

First, we begin with the following experiment, to verify whether all the methods work and provide
valid Φ results. We perform 25 repetitions of the experiment with each method to ensure statistical
significance. We set the lower dimension, or the number of nodes, to 3 and the higher dimension to 4.
We execute a total of 50 iterations with ϵ = 5 for the prior guided search algorithm. We set µ = 0.1 and
the prior distribution values on the dimensions to p(ω) = [0.2, 0.8]. With these values, we obtain the Φ
results across the iterations shown in Figure 1. The best Φ found in the search was 3.034082.

Figure 1: Average results of Φ with the toy experiment configuration of the Prior Guided Random Search
method (blue) compared to the Grid (green) and Random search (orange) baselines. Better seen in color.

As we can see in Figure 1, the prior guided random search method, plotted in blue, outperform the
baselines. The results are statistically significant as the plotted results are the means of 25 different
experiments. As the prior guided random search method performs almost twice as better as the grid
search method, a statistical hypothesis testing method will provide a p-value lower than .01 to reject the
null hypotheses that the differences are random, accepting the alternative hypothesis that both methods
have different distributions. Concretely, random search also outperforms grid search. And lastly, the
more interesting conclusion is that the prior guided random search method outperforms random search.
Regarding grid search, we have found that the restriction of the matrices of the linear grid seems to
provide bad results, resulting mostly on invalid TPMs and not being a method that is worth using to
optimize Φ in the Ω space. Hence, for the next experiments, and also for computational reasons due to
the complexity of Φ with respect to the number of nodes, we will only compare the prior guided random
search method with the random search method.
We have performed a little experiment, which we will call Graphical Experiment, of one repetition just
to show graphically the obtained transition probability matrix, the connectivity matrix, and the initial
state. This experiment involves 100 repetitions with the minimum dimension of nodes being 3 and the
maximum number of nodes 4. The initial prior is [0.3, 0.7]. We obtained, with the prior guided random
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search algorithm, a graph with Φ = 2.6823, with a final prior with value [0.12, 0.88], the connectivity
matrix shown on Figure 2, the transition probability matrix shown on Figure 3 and the state shown on
Figure 4.

Figure 2: Connectivity matrix associated to the best result obtained in the Graphical Experiment.

In the following experiment, we want to verify whether the behavior differences in the method gen-
eralize to more than 2 dimensions in the space of TPMs, this time, from 2 nodes to 5. With a prior
distribution with weights p(ω) = [0.1, 0.1, 0.3, 0.5] and only 5 repetitions to save computational resources
and 50 iterations. We obtain the results plotted in Figure 5 where we see how the Prior Guided Random
Search algorithm is also outperforming the random search method.

We can see, once again, that both searches are able to find better TPMs according to the Φ measure
once the iterations are executed and that prior guided random search once again outperforms random
search, not only on average but in absolute value. In particular, the maximum Φ found by the prior
guided random search method is 3.1681 and the best result obtained by random search is 2.0832.

As we have stated previously, the complexity of evaluating Φ with respect to the nodes is high, in
particular, O(n53n), which must be multiplied by 2n in these searches as we look for a feasible state
for a randomly sampled TPM. Consequently, and having shown empirical evidence of the usefulness of
the random searches method and how our proposed method even outperforms random search for this
specific task, our last experiment only involves 1 repetition of each method, for computational reasons.
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Figure 3: Transition probability matrix associated to the best result obtained in the Graphical Experi-
ment. 0 is painted in purple and 1 in yellow.

Being unable to test Φ in TPMs with 6 or more nodes due to the complexity of the algorithm, in this
experiment, we will check whether better results of Φ are obtained if the number of nodes and iterations
is bigger. The minimum dimension is now 4 and the maximum dimension is 5. The prior distribution is
[0.2, 0.8] and the number of iterations is 500, with µ = 1 and ϵ = 5, obtained the results plotted in Figure 6.

We can see how better results are obtained if we have a bigger budget of iterations or time. Moreover,
this experiment also shows that the Prior Guided Random Search algorithm outperforms Random search
once the prior distribution fits the optimal number of nodes. As the Ω space is very sparse, a much
higher number of iterations would be required to obtain a better approximation to the optimal Φ. More
critically, for further work, with more computation power that would enable searches for graphs of more
than 6 nodes, the space would even be more sparse, so much more computation would be needed to find
graphs with bigger Φ. However, we have shown with these experiments how our algorithm would adapt
to the sparsity of every dimension and keep searching for solutions in the number of nodes that represents
the better trade-off between the probability of finding better Φ and the sparsity of the dimension that
makes difficult to find a feasible Φ.
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Figure 4: Initial state associated with the best result obtained in the Graphical Experiment. 0 is painted
in purple and 1 in yellow.

3.2 Experiments to explore the graph space and make statistical inference of
Φ

The complexity of the space of transition probability matrices makes it computationally intractable to be
explored exhaustively. Moreover, in order to measure Φ, we must not only take into account the matrix
that encodes the transitions but also the connectivity matrix, that represents the connections, or edges,
of the graph. Consequently, the complexity, or size measure, of the space is even higher.

However, we can frame this problem into the classical statistical inference framework. The population
is the total of possible combinations for a given number of graphs and we can extract a random sample
from it. The goal is to make inferences about the mean Φ parameter µ associated with each number of
nodes. Then, we can perform statistical hypothesis testing to determine whether the difference of Φ is
statistically significant when N grows. By doing this procedure, we can validate, with the previous set of
experiments, that our algorithm is going to work even better when the number of nodes grows, assuming
that the same inference will hold when the number of nodes grows, which we can not empirically test
since the complexity of computing Φ when the number of nodes grows is exponential.

The first toy experiment involves 100 graphs of 3 nodes and 100 graphs of 4 nodes. We obtain an
empirical Φ mean of 0.0517 in the case of 3 nodes and, in the case of 4 nodes, an empirical mean of
0.1711. The confidence intervals at 95% are [0.0212, 0.0822] in the case of 3 nodes and [0.1093, 0.2328]
in the case of 4 nodes. We also perform a 2 sample t-test whose null hypothesis is that both population
means are equal and the alternative hypothesis is that they are different. We obtain a t-statistic of −3.38
whose associated p-value is 0.0008. At a confidence level of α = 0.01 we can reject the null hypothesis
that both means are equal, hence accepting the alternative hypothesis that they are different, being the
Φ population mean of graphs of 4 nodes bigger than the Φ population mean of graphs of 3 nodes. Also,
the percentage of infeasible solutions found in the case of 3 nodes has been 72.6775% and in the case of
4 nodes has been 84.7094%, providing empirical evidence of Eq. 2. To test consistency, we performed
the same experiment with a population of 200 in both groups. In this case, we obtained an even bigger,
in absolute terms, a t-test statistic of value −4.6420 with associated p-value 4.69e− 6, rejecting the null
hypothesis. The obtained empirical means are 0.0569 and 0.1847, pretty similar to the ones obtained in
the previous experiment with similar confidence intervals.

The second experiment involves a population of 100 graphs of 4 nodes and 100 graphs of 5 nodes. We
obtain an empirical Φ mean of 0.1432 in the case of 4 nodes and, in the case of 5 nodes, an empirical mean
of 0.3267. The confidence intervals at 95% are [0.0822, 0.2043] in the case of 4 nodes and [0.2217, 0.4317]
in the case of 5 nodes. We also perform a 2 sample t-test whose null hypothesis is that both population
means are equal and the alternative hypothesis is that they are different. We obtain a t-statistic of −2.94
whose associated p-value is 0.0036. At a confidence level of α = 0.01 we can reject the null hypothesis
that both means are equal, hence accepting the alternative hypothesis that they are different, being the
Φ population mean of graphs of 5 nodes bigger than the Φ population mean of graphs of 3 nodes. Also,
the percentage of infeasible solutions found in the case of 4 nodes has been 84.98% and in the case of 5
nodes has been a 91.84%
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Figure 5: Average results of Φ with the small experiment configuration of the Prior Guided Random
Search method (blue) compared to the Random search (orange) baseline. Better seen in color.

4 Philosophical discussion
This work presents an improvement on how to compute Φ for arbitrary networks and TPMs. Whereas
the present calculations still work with toy models with a maximum of 6 nodes, the obtained results with
a guided random method strongly suggest that the latter outperforms other methods to explore opti-
mal TPMs as the number of nodes increases. In this sense, it reveals a promising procedure for further
progress in the time computation of Φ and, eventually, for the ascertainment of the validity of IIT as the
scientific theory of consciousness in realistic networks. We aim at answering questions like these: Can
we quantitatively provide a method to generate consciousness? May this methodology be adapted to
deep neural networks if the assumptions of IIT were true, providing deep learning machine consciousness
architectures [19]?

On the other hand, one should keep in mind the intrinsic limitations of the PyPhi algorithm, which
obviously affect our results. According to its creators, “[T]he analysis can only be meaningfully applied
to a system that is Markovian and satisfies the conditional independence property. These are reasonable
assumptions for the intended use case of the software: analyzing a causal TPM derived using the calculus
of perturbations. However, there is no guarantee that these assumptions will be valid in other circum-
stances, such as TPMs derived from observed time series (e.g., EEG recordings).” [17]

The ideas of the last paragraph allow us to dive into additional philosophical problems related to the
overall IIT procedures. One of those problems is the origin of networks. In the case of artificial networks
(1), the unity of the network is artificially created by network designers, avoiding external influences that
can disrupt the workings of the network. In the case of natural networks (2), however, one may wonder
who or what causes the unity of the system. Moreover, whereas in case (1) possible consciousness as
defined by IIT remains extrinsic, as a bigger maximal Φ can be reached by adding new nodes to the
initial network, it is no longer clear —indeed very controversial— that the same procedure works in case
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Figure 6: Average results of Φ with the small experiment configuration of the Prior Guided Random
Search method (blue) compared to the Random search (orange) baseline. Better seen in color.

(2). Case (2) could be the only scenario in which, in keeping with IIT tenets, consciousness is intrinsic.
But if that is the case, IP still holds for case (2).

Last but not least, our procedure to obtain bigger Φ as the number of nodes is increased and the
system’s architecture becomes more complex might not reflect the ontology of case (2). The bottom-line
problem is that an optimization procedure might just be an epistemic tool to obtain the magnitude which
maximizes an extant, meaningful, quantity. However, the procedure itself need not unravel the ontological
processes underlying the reality of said quantity.

5 Conclusions and further work
Throughout this paper, we have dealt with integrated information theory as a relatively novel approach
to quantifying truly integrated information in a network of interacting nodes. Beyond its technical inter-
est in the field, research in IIT is exploding as it aims to become a scientific theory of consciousness by
validating its axioms in artificial and natural networks. Nevertheless, at present, procedures to compute
Φ remain too lengthy. Even if the creation of the PyPhi software has provided IIT researchers with a
magnificent tool, computation times increase too quickly with the number of nodes in a network. Yet,
studying how maximal Φ varies when new nodes and interactions are added to the system may prove
crucial to see how, allegedly, consciousness scales up and whether the intrinsicality problem presents a
true threat to IIT.

Our paper aims to provide a new method to evaluate maximal Φ with the help of state-of-the-art opti-
mization procedures of network quantities. However, as stated in the technical sections, the requirements
of conditional independence for the TPMs charge our procedure with a burden that may not be eased out
while keeping all its computational strengths. For the time being, ours remain a toy model that seems
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promising to pursue in future works.

This work thus opens up several lines of research. To enhance the behavior of the method, we hypoth-
esize that several actions could be taken. First, it may be possible to optimize on a smooth, continuous
space of conditional TPMs to use Bayesian optimization or genetic algorithms. This approach would
need to formulate an analytical transformation from the space of TPMs into a smooth and continuous
space that can be modeled with a Gaussian process, that is the probabilistic surrogate model of Bayesian
optimization. By doing so, we can exploit the exploitation-exploration behavior of Bayesian optimiza-
tion, which may outperform the current prior-guided random search algorithm. If this transformation
cannot be eventually found, we can extract the best-observed result by the prior-guided random search
algorithm and execute a combinatorial optimization algorithm with the best-observed result as the initial
point. This may also provide good results if Φ varies smoothly as a result of varying the TPM or the CM
in a single element. Lastly, as we have seen, Φ is computationally costly. An interesting line of research
would be to find a cheaper approximation of Φ with respect to a particular graph with a regression graph
machine learning algorithm. In order to fit this algorithm it would be necessary to create a huge dataset
of graphs annotated by its Φ values and study whether a regression graph machine learning algorithm is
able to accurately approximate Φ.
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