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 ABSTRACT 

This short report highlights properties of fractality and self-organized criticality in the Ising 

model of ferromagnetism and how these ideas can be applied using wavelet transforms to 

comparisons with the study of self-organized criticality in neurodynamics. Matlab programs are 

provided to freely replicate the results. 
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Introduction 
 

The Ising model 
[1]

 investigates the phase transition between ferromagnetism and paramagnetism 

through the Metropolis-Hastings algorithm 
[2]

 run inside a Monte Carlo loop 
[3]

. For negative 

interaction strengths between spin pairs, an anti-ferromagnetic spin-glass results in which 

adjacent spins have lowest energy when their spins alternate up and down. 
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Fig 1: The Ising model of ferromagnetism as an example of phase transition 

criticality.  In the lower figure a cellular simulation based on a given cell element 

interacting with the four nearest neighbours (above and below and to either side) in a 

rectangular array. The array is iterated according to the Hamiltonian, in this case for 

3000 steps. In blue magnetization is plotted as a function of interaction strength of 

individual spin elements, with the theoretical curve outlined in red. For low interaction 

strengths (or equivalently for high thermal energies by comparison with the interaction 

strength) we have paramagnetism in which individual domains of cells of aligned spin 

are randomly distributed and net magnetization will occur only in the presence of an 

external magnetic field. As the interaction strength increases, there is a critical phase 

transition to the ferromagnetic state after which the spins become polarized into large 

domains with aligned spins and in the asymptotic limit dominance of either spin up or 

spin down results in bifurcation towards a fully saturated state of net magnetization 1 or 

-1. At the critical transition value of J = ~0.44 magnetization domains form a fractal 

distribution similar to states of self-organized criticality, such as earthquakes and sand-

piles, in which the critical state is maintained by fractal avalanches. In the top row 

interaction strength is plotted for both positive and negative interaction strengths on a 

larger array that shown in the lower figure.  When the interaction strength is negative 

spins have a lower energy when adjacent spins are opposite, so we then have the anti-

ferromagnetism of a spin-glass. Negative values also have a critical transition, but this 

does not result in net magnetization as the lowest energy states form a chequer-board 

having zero net polarization. However, as there are two complementary chequer-board 

arrangements, large domains still develop, with frustration along their boundaries, 

where the energy cannot be minimized. In the insets are shown corresponding charts of 

energy versus magnetization and interaction strength. 

  

 

Methods 
 

A set of Matlab m-files performing computational Monte Carlo simulations, developed 

from 
[4]

 following 
[5]

 are provided in the link in appendix 2. The equations supporting the 

algorithm and some of the theory is displayed in appendix 1. 

  

Generally the computational simulation is performed using only nearest neighbours directly 

above and below and to either side of an element of a rectangular array, (although more 

elaborate neighbourhoods are also used in figure 2). This closest neighbour computational 

process coincides with the Bethe-Peierls approximation 
[6] 

to Ising spin states in statistical 

mechanics. 

  

An array is initiated in a random configuration and is iterated cell by cell, flipping a set 

proportion of the spins in each iteration if a random variable exceeds the energy difference 

between the cell and its flipped state in relation to its four neighbours. This provides a 

thermodynamic model in which spins will flip to a lower energy state but may also, with 

exponentially diminishing probability, become flipped to a higher energy one. 
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Figures 1 and 2 show the results of this investigation both for the fractal dynamics of the critical 

phase transition to ferromagnetism with positive interaction energies and for the capacity to form 

fractal mode-locked states in an anti-ferromagnetic spin-glass state with negative interaction 

energies. Figure 3 also shows this fractal critical behavior by analyzing the connected regions 

within the final state of the array. 

  

 
 

Fig 2: The effect of increasing polarization on an anti-ferromagnetic spin-glass in which 

the lowest energy state has neighbouring cells having oppositely aligned spins. In the 

lower figure (a) is shown the magnetization for a 2-D spin glass in which only the four 

closest neighbours interact, as the external field B is increased.  There is a strong 

plateau in which a chequer-board lowest energy state with adjacent spins opposite is 

maintained. (b) There is also a hint of plateuing at a magnetization of ~0.5 in which ¼ 

of the spins would be aligned one way and ¾ the other. The top row arrays show states 

corresponding to various values of the external field. (c) The theoretical distribution for 

a 1-D spin-glass with negative interaction strength (Schröder) is a ‘devil’s staircase’ in 

which mode-locking occurs for an interval neighbourhood of each rational 

magnetization state in which a regular periodic arrangement, such as uduud, can result 

in rational periods of any order. (d) The 2-D simulation failed to show any further 

model-locking even when the interacting neighbourhood was enlarged to include more 

distant interactions (with an inverse square 2-D dipole interaction), however in the 

corresponding 1-D simulation (with an inverse linear dipole interaction) a series of 

plateaus formed at rational magnetization values.  
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The negative interaction strength regime was also explored using variations on the Matlab 

algorithm, in both 2-D and 1-D modes, to test for the fractal devil’s staircase of mode-locked 

states 
[7]

 referred to in Schröder 
[8]

. The lack of additional plateaus was hypothesized to result 

from energy interaction confinement to nearest neighbours, so variants of the algorithm were 

developed in which more distant neighbours were also involved in the energy function through 

dipole interactions in their respective dimensionalities. While the 2-D model failed to 

demonstrate additional mode-locking states, the 1-D model did then return a series of near 

stationary intervals surrounding several fractional states of magnetization, consistent with the 

results in Schröder. 

  

 
 

Fig 3: Log-log plot of region size versus number of regions of this size range for J = 0, 

0.2, 0.4406868, 0.6, 1 coloured blue, green, black, magenta and red respectively, each 

for an average of five Monte Carlo runs of 3000 iterations, showing that the critical 

state has a consistent fractal power law distribution (black) by contrast with stochastic 

sub-critical J which lack large regions and partitioned super-critical J which have a 

preponderance of a few large regions, (lower red and magenta sections) containing a 

small number of small random incursions (left). 

  

Recent research in neurodynamics by Bullmore’s group 
[9]

 has highlighted the close 

correspondence between the fractal dynamics of the critical state of the Ising model, other 

models such as the Kuramoto model 
[10]

 and self-organized criticality in brain dynamics. We 

thus extended our use of the Matlab algorithm to replicate some of the methods used in their 

work. We thus adapted a wavelet analysis algorithm to portray the time behaviour of the Ising 

model in terms of wavelet amplitudes and the phase correlations between pairs of channels. 
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Fig 4: Above: Wavelet transforms of the summed outputs of an 8x8 sub-array of a 

96x96 Ising simulation at the values J = 0, 0.4406868, 1 for zero external field 

demonstrate fractal time variation of a combined channel at the critical value. The 

dominance of low frequency wavelet amplitudes at J=1 reflects the partitioning into 

large domains. The high frequency contributions at J=0 reflect the small scale 

randomness. Below: Plots of phase lock of the complex correlation function between 

superimposed channels for the same values of J as above, showing that the fractal 

nature of the critical state also extends to a fractal  distribution of temporal phase lock 

episodes. The black regions for J = 1 result from zero wavelet amplitudes of one or 

other channel at higher frequencies causing the argument of the complex correlation 

function to be undefined. 

  

In Figure 4 is shown an absolute wavelet transform for an exponential series of frequencies for 

sub-critical, critical and super-critical interaction strengths, demonstrating that the fractal nature 

of the critical state can be readily detected using wavelet transforms. We defined and used a 

complex version of the Morlet wavelet  rather than the Hilbert wavelet transform 

of Bullmore’s group, but have otherwise followed their methods, using an Ising simulation on a 

96x96 array and then summed the binary [-1,1] values on each 8x8 sub-array to form 12x12 - 

effectively 64-bit channels of ‘real’ amplitudes – iterated over the last 8192 iterations of a 

12,192 iteration run. 

  

The successive iterates were firstly given a direct wavelet portrait using the absolute amplitude 

of the real part of the wavelet coefficient array to generate the upper series of profiles in Figure 

4.  Pairs of channels were then phase correlated and the phase angle of the resulting complex 

argument taken in the range  to generate a set of two-channel correlation profiles, 

http://www.dhushara.com/DarkHeart/Ising/png/wavelets1.png
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giving a portrait of the fractal distribution of the critical state in terms of time intervals of phase 

correlation between a pair of channels. 

  

 
 

Fig 5: Log-log plot of number of intervals on which a pair of channels have phase lock 

with respect to the length of the phase lock. J = 0, 0.4406868, 1 coloured blue, black, 

and red respectively. The critical state (black) approximates a power law distribution, 

while J = 0 lacks longer phase lock intervals and J=1 is dominated by large intervals 

corresponding to the large domains and very short intervals caused by frustration 

between competing domains. 

  

Finally we pooled phase correlation intervals of several pairs of channels using Bullmore 

group’s criteria to test for a power law relationship at criticality over 4 orders of magnitude of 

interval length (exponentially double the range of fig 6). These results were not averaged over 

short time intervals as in their work, and were performed only for a small number of pairs, but 

do show an approximate power law distribution in the log-log plot of figure 5 as a proof of 

principle for the Matlab program which can be compared with their results as shown in figure 6. 
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Fig 6: (Left): Probability distribution of phase lock interval (PLI) between pairs of 

processes at critical (black line) and at hot temperature (low interaction strength)  (blue) 

plotted on a log-log scale. The black dashed line represents a power law with slope 

a~{1:5. (Right) Probability distribution of lability of global synchronization (the 

number of channel pairs in phase lock over a given interval) at critical temperature 

(black line) and at hot temperature (low interaction strength) (blue); the black dashed 

line represents a power law with slope a~{0:5) (Bullmore et. al.). 

  

Appendix 1: Summary of the Theory and Equations 
  

The Hamiltonian for the interaction is 

 

. 

The ratio of probabilities for a flip is 

. 

 

The spins of particles in which r > 1 or r < 1 but greater than a uniformly distributed random 

number have the potential to be flipped if a second random number exceeds a given threshold 

regulating the proportion flipping in each iteration. 

  

The values for the theoretical thermodynamic curves shown in figure 1 are outlined below:. 

  

 
  

The wavelet coefficients  the phase coherence  and the lability of global 

synchronization  are given by: 

http://www.dhushara.com/DarkHeart/Ising/png/eqns1.png
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Appendix 2: Matlab Programs Download Link 

  
http://www.math.auckland.ac.nz/~king/DarkHeart/Ising/Ising.zip 
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